返回主页 Sun

科研成果

联系我们

联 系 人:兰老师
电 话:010-64412084
传 真:010-64427698
电子邮件:lanjl@mail.buct.edu.cn
邮 编:100029
您当前的位置: 首页  科研成果  论文著作

2014年所发表的部分论文(可下载)

责编: | 发布日期:2016-09-05| 阅读次数:22
 1.     Bi H, Sui G, Yang X. Studies on polymer nanofibre membranes with optimized core–shell structure as outstanding performance skeleton materials in gel polymer electrolytes[J]. Journal of Power Sources, 2014, 267: 309-315.

2.     Liu X, Teng D, Li T, et al. Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity[J]. Journal of Power Sources, 2014, 272: 614-621.

3.     Yan X, Liu Y, Fan X, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 248: 745-751.

4.     Liu Y, Yan X, Lan J L, et al. Ti-doped SnO x encapsulated in Carbon nanofibers with enhanced lithium storage properties[J]. Electrochimica Acta, 2014, 137: 9-16.

5.     Yan X, Yu Y, Ryu S K, et al. Simple and scalable synthesis of phosphorus and nitrogen enriched porous carbons with high volumetric capacitance[J]. Electrochimica Acta, 2014, 136: 466-472.

6.     Sun J, Teng D, Liu Y, et al. Enhanced lithium storage capability of a dual-phase Li 4 Ti 5 O 12–TiO 2–carbon nanofiber anode with interfacial pseudocapacitive effect[J]. RSC Advances, 2014, 4(89): 48632-48638.

7.     Teng D, Yu Y, Yang X. Hierarchical flower-like TiO 2/MPCNFs as a free-standing anode with superior cycling reversibility and rate capability[J]. RSC Advances, 2014, 4(24): 12309-12312.

8.     Yan, XD; Yu, YH; Yang, XP. Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances 2014, 4, 24986-24990.

9.     Zheng B, Liu Y, Zhan B, et al. Enhanced Thermoelectric Properties of BiCuSeO/Polyaniline Composites[J]. Journal of Electronic Materials, 2014, 43(9): 3695-3700.

10.  Zheng B, Lin Y, Lan J, et al. Thermoelectric Properties of Ca 3 Co 4 O 9/Polyaniline Composites[J]. Journal of Materials Science & Technology, 2014, 30(4): 423-426.

11.  Li X, Lan J, Ai M, et al. Biomineralization on polymer-coated multi-walled carbon nanotubes with different surface functional groups[J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 753-761.

12.  Jia X, Tang T, Cheng D, et al. Growth mechani** of bioglass nanoparticles in polyacrylonitrile-based carbon nanofibers[J]. RSC Advances, 2014, 4(109): 64299-64309.

13.  Shan D, Huang Z, Zhao Y, et al. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene[J]. Biomedical Materials, 2014, 9(6): 061001.

14.  Cheng L, Zhou X, Zhong H, et al. NaF-loaded core–shell PAN–PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins[J]. Materials Science and Engineering: C, 2014, 34: 262-269.

15.  Zhao Y, Lan J, Wang X, et al. Synthesis of iodine-containing cyclophosphazenes for using as radiopacifiers in dental composite resin[J]. Materials Science and Engineering: C, 2014, 43: 432-438.

16.  Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly (l‐lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. Journal of Biomedical Materials Research Part A, 2015, 103(4): 1424-1435.

17.  Li Y, Shi Y, Duan S, et al. Electrospun biodegradable polyorganophosphazene fibrous matrix with poly (dopamine) coating for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2014, 102(11): 3894-3902.

18.  Cai Q, Mao J, Li X, et al. Macroporous and nanofibrous PLLA scaffolds reinforced with calcium phosphate-coated multiwalled carbon nanotubes[J]. Materials Letters, 2014, 128: 238-241.

19.  Li P, Liu D, Zhu B, et al. Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 72-80.

20.  Jia X, Zhu J, Li W, et al. Compressive and tensile response of CFRP cylinders induced by multi-walled carbon nanotubes[J]. Composites Science and Technology, 2015, 110: 35-44.

21.  Li W, Yang G, Yang X. Crushing characteristics of filament wound carbon fiber/epoxy tube under quasi-static compression condition[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(6): 1225-1228.

22.  张翠华, 张苒, 唐天洪, 等. 金属掺杂及多孔化 Bioglass@ CNFs 的制备与结构分析[J]. 稀有金属材料与工程, 2014, 1.

23.  李亚南, 蔡晴, 贾小龙, 等. 水对 3 种双固化复合树脂冠核材料弯曲性能的影响[J]. 中国组织工程研究, 2014, 18(8): 1211-1217.

24.  王晓燕,蔡晴,邓旭亮等.二氧化硅纳米纤维对复合树脂力学性能的影响[J]. 现代口腔医学杂志 2014, 28(4): 202-205.